The independence polynomial of a graph at -1

نویسندگان

  • Vadim E. Levit
  • Eugen Mandrescu
چکیده

The stability number α(G) of the graph G is the size of a maximum stable set of G. If sk denotes the number of stable sets of cardinality k in graph G, then I(G;x) = s0 + s1x + ... + sαx α is the independence polynomial of G [12], where α = α(G) is the size of a maximum stable set. In this paper we prove that I(G;−1) satisfies |I(G;−1)| ≤ 2, where ν(G) equals the cyclomatic number of G, and the bounds are sharp. In particular, if G is a connected well-covered graph of girth ≥ 6, non-isomorphic to C7 or K2 (e.g., a well-covered tree 6= K2), then I(G;−1) = 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Roots of Hosoya Polynomial of a Graph

Let G = (V, E) be a simple graph. Hosoya polynomial of G is d(u,v) H(G, x) = {u,v}V(G)x , where, d(u ,v) denotes the distance between vertices u and v. As is the case with other graph polynomials, such as chromatic, independence and domination polynomial, it is natural to study the roots of Hosoya polynomial of a graph. In this paper we study the roots of Hosoya polynomials of some specific g...

متن کامل

Girth, minimum degree, independence, and broadcast independence

An independent broadcast on a connected graph $G$is a function $f:V(G)to mathbb{N}_0$such that, for every vertex $x$ of $G$, the value $f(x)$ is at most the eccentricity of $x$ in $G$,and $f(x)>0$ implies that $f(y)=0$ for every vertex $y$ of $G$ within distance at most $f(x)$ from $x$.The broadcast independence number $alpha_b(G)$ of $G$is the largest weight $sumlimits_{xin V(G)}f(x)$of an ind...

متن کامل

Some New Results On the Hosoya Polynomial of Graph Operations

The Wiener index is a graph invariant that has found extensive application in chemistry. In addition to that a generating function, which was called the Wiener polynomial, who’s derivate is a q-analog of the Wiener index was defined. In an article, Sagan, Yeh and Zhang in [The Wiener Polynomial of a graph, Int. J. Quantun Chem., 60 (1996), 959969] attained what graph operations do to the Wiene...

متن کامل

Chromatic polynomials of some nanostars

Let G be a simple graph and (G,) denotes the number of proper vertex colourings of G with at most  colours, which is for a fixed graph G , a polynomial in  , which is called the chromatic polynomial of G . Using the chromatic polynomial of some specific graphs, we obtain the chromatic polynomials of some nanostars.

متن کامل

On the tutte polynomial of benzenoid chains

The Tutte polynomial of a graph G, T(G, x,y) is a polynomial in two variables defined for every undirected graph contains information about how the graph is connected. In this paper a simple formula for computing Tutte polynomial of a benzenoid chain is presented.

متن کامل

ON THE EDGE COVER POLYNOMIAL OF CERTAIN GRAPHS

Let $G$ be a simple graph of order $n$ and size $m$.The edge covering of $G$ is a set of edges such that every vertex of $G$ is incident to at least one edge of the set. The edge cover polynomial of $G$ is the polynomial$E(G,x)=sum_{i=rho(G)}^{m} e(G,i) x^{i}$,where $e(G,i)$ is the number of edge coverings of $G$ of size $i$, and$rho(G)$ is the edge covering number of $G$. In this paper we stud...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0904.4819  شماره 

صفحات  -

تاریخ انتشار 2009